SRI TV

Ikuti perkembangan terbaru Indonesia di lapangan dengan berita berbasis fakta Sri Wijaya TV, cuplikan video eksklusif, foto, dan peta terbaru.

Hasilnya bisa “merevolusi” pemahaman kita tentang jarak

Hasilnya bisa “merevolusi” pemahaman kita tentang jarak

Para peneliti menemukan bahwa kerangka teoritis baru untuk menyatukan fisika hierarkis dan non-hierarki dihasilkan melalui dualitas ruang non-hierarkis dan ruang melengkung.

Teka-teki fisika dipecahkan melalui dualitas baru.

Menurut pemikiran tradisional, perlu untuk mengubah bentuk bidang datar dengan menekuk atau memanjangkannya untuk menciptakan ruang melengkung. Sekelompok ulama memiliki Universitas Purdue Dia mengembangkan metode baru untuk menciptakan ruang melengkung yang juga memberikan jawaban atas teka-teki fisika. Tim mengembangkan metode menggunakan non-hermitisitas, yang terjadi di semua sistem yang digabungkan dengan lingkungan, untuk membangun permukaan hiperbolik dan sejumlah ruang lengkung khas lainnya tanpa menyebabkan distorsi fisik apa pun pada sistem fisik.

“Pekerjaan kami mungkin merevolusi pemahaman masyarakat umum tentang kelengkungan dan jarak,” kata Qi Zhou, profesor fisika dan astronomi.

“Itu juga menjawab pertanyaan lama dalam mekanika kuantum non-Hermitian dengan menghubungkan fisika non-Hermitian dan jarak lengkung. Kedua topik ini seharusnya benar-benar terpisah. Perilaku sistem non-Hermitian yang tidak biasa, yang telah membingungkan fisikawan selama beberapa dekade, tidak lagi menjadi misteri jika kita menyadari bahwa ruang itu melengkung. Dengan kata lain, ruang tidak lurus dan melengkung adalah ganda satu sama lain, menjadi dua sisi mata uang yang sama.”

Poincaré Setengah Pesawat

Semi-bidang Poincaré dapat dilihat di latar belakang, menunjukkan permukaan melengkung. Geodesi putih dari permukaan melengkung muncul sebagai analog dari garis lurus pada bidang datar. Bola putih yang bergerak ke arah yang benar menunjukkan asal geometris dari efek kulit yang tidak biasa dalam fisika non-hierarkis. Kredit: Chenwei Lv dan Ren Zhang.

Hasil tim dipublikasikan di jurnal

One must first comprehend the distinction between Hermitian and non-Hermitian systems in physics in order to comprehend how this discovery works. Zhou explains it using the example of a quantum particle that can “hop” between several locations on a lattice.

If the probability for a quantum particle to hop in the right direction is the same as the probability to hop in the left direction, then the Hamiltonian is Hermitian. If these two probabilities are different, the Hamiltonian is non-Hermitian. This is the reason that Chenwei and Ren Zhang have used arrows with different sizes and thicknesses to denote the hopping probabilities in opposite directions in their plot.

“Typical textbooks of quantum mechanics mainly focus on systems governed by Hamiltonians that are Hermitian,” says Lv.

“A quantum particle moving in a lattice needs to have an equal probability to tunnel along the left and right directions. Whereas Hermitian Hamiltonians are well-established frameworks for studying isolated systems, the couplings with the environment inevitably lead to dissipations in open systems, which may give rise to Hamiltonians that are no longer Hermitian. For instance, the tunneling amplitudes in a lattice are no longer equal in opposite directions, a phenomenon called nonreciprocal tunneling. In such non-Hermitian systems, familiar textbook results no longer apply and some may even look completely opposite to that of Hermitian systems. For instance, eigenstates of non-Hermitian systems are no longer orthogonal, in sharp contrast to what we learned in the first class of an undergraduate quantum mechanics course. These extraordinary behaviors of non-Hermitian systems have been intriguing physicists for decades, but many outstanding questions remain open.”

He further explains that their work provides an unprecedented explanation of fundamental non-Hermitian quantum phenomena. They found that a non-Hermitian Hamiltonian has curved the space where a quantum particle resides. For instance, a quantum particle in a lattice with nonreciprocal tunneling is in fact moving on a curved surface. The ratio of the tunneling amplitudes along one direction to that in the opposite direction controls how large the surface is curved.

In such curved spaces, all the strange non-Hermitian phenomena, some of which may even appear unphysical, immediately become natural. It is the finite curvature that requires orthonormal conditions distinct from their counterparts in flat spaces. As such, eigenstates would not appear orthogonal if we used the theoretical formula derived for flat spaces. It is also the finite curvature that gives rise to the extraordinary non-Hermitian skin effect that all eigenstates concentrate near one edge of the system.

“This research is of fundamental importance and its implications are two-fold,” says Zhang. “On the one hand, it establishes non-Hermiticity as a unique tool to simulate intriguing quantum systems in curved spaces,” he explains. “Most quantum systems available in laboratories are flat and it often requires significant efforts to access quantum systems in curved spaces. Our results show that non-Hermiticity offers experimentalists an extra knob to access and manipulate curved spaces.

An example is that a hyperbolic surface could be created and further be threaded by a magnetic field. This could allow experimentalists to explore the responses of quantum Hall states to finite curvatures, an outstanding question in condensed matter physics. On the other hand, the duality allows experimentalists to use curved spaces to explore non-Hermitian physics. For instance, our results provide experimentalists a new approach to access exceptional points using curved spaces and improve the precision of quantum sensors without resorting to dissipations.”

Now that the team has published their findings, they anticipate it spinning off into multiple directions for further study. Physicists studying curved spaces could implement their apparatuses to address challenging questions in non-Hermitian physics.

Also, physicists working on non-Hermitian systems could tailor dissipations to access non-trivial curved spaces that cannot be easily obtained by conventional means. The Zhou research group will continue to theoretically explore more connections between non-Hermitian physics and curved spaces. They also hope to help bridge the gap between these two physics subjects and bring these two different communities together with future research.

According to the team, Purdue University is uniquely qualified to foster this type of quantum research. Purdue has been growing strong in quantum information science at a fast pace over the past few years. The Purdue Quantum Science and Engineering Institute paired with the Department of Physics and Astronomy, allows the team to collaborate with many colleagues with diverse expertise and foster interdepartmental and collegiate growth on a variety of platforms that exhibit dissipations and nonreciprocal tunneling.

Reference: “Curving the space by non-Hermiticity” by Chenwei Lv, Ren Zhang, Zhengzheng Zhai, and Qi Zhou, 21 April 2022, Nature Communications.
DOI: 10.1038/s41467-022-29774-8

READ  ADHD pada orang dewasa dikaitkan dengan peningkatan risiko demensia