Para astronom telah melihat tanda-tanda ‘hot spot’ yang mengorbit di sekitar Sagitarius A*, dan[{” attribute=””>black hole at the center of our galaxy, using the Atacama Large Millimeter/submillimeter Array (ALMA). The finding helps us better understand the enigmatic and dynamic environment of our supermassive black hole.
“We think we’re looking at a hot bubble of gas zipping around Sagittarius A* on an orbit similar in size to that of the planet Mercury, but making a full loop in just around 70 minutes. This requires a mind-blowing velocity of about 30% of the speed of light!” says Maciek Wielgus of the Max Planck Institute for Radio Astronomy in Bonn, Germany. He led the study that was published today (September 22, 2022) in the journal Astronomy & Astrophysics.
The observations were made with ALMA in the Chilean Andes, during a campaign by the Event Horizon Telescope (EHT) Collaboration to image black holes. ALMA is — a radio telescope co-owned by the European Southern Observatory (ESO). In April 2017 the EHT linked together eight existing radio telescopes worldwide, including ALMA, resulting in the recently released first-ever image of Sagittarius A*. To calibrate the EHT data, Wielgus and his colleagues, who are members of the EHT Collaboration, used ALMA data recorded simultaneously with the EHT observations of Sagittarius A*. To the research team’s surprise, there were more clues to the nature of the black hole hidden in the ALMA-only measurements.
Dengan menggunakan ALMA, para astronom telah menemukan gelembung gas panas yang mengorbit Sagitarius A*, lubang hitam di pusat galaksi kita, dengan kecepatan 30% kecepatan cahaya.
Secara kebetulan, beberapa pengamatan dilakukan tak lama setelah ledakan atau pancaran energi sinar-X dipancarkan dari pusat galaksi kita, yang diamati oleh[{” attribute=””>NASA’s Chandra X-ray Observatory. These kinds of flares, previously observed with X-ray and infrared telescopes, are thought to be associated with so-called ‘hot spots’, hot gas bubbles that orbit very fast and close to the black hole.
“What is really new and interesting is that such flares were so far only clearly present in X-ray and infrared observations of Sagittarius A*. Here we see for the first time a very strong indication that orbiting hot spots are also present in radio observations,” says Wielgus, who is also affiliated with the Nicolaus Copernicus Astronomical Center, in Warsaw, Poland and the Black Hole Initiative at Harvard University, USA.
Video ini menunjukkan animasi titik panas, gelembung gas panas, di orbit sekitar Sagitarius A*, sebuah lubang hitam empat juta kali lebih besar dari Matahari di pusat planet kita.[{” attribute=””>Milky Way. While the black hole (center) has been directly imaged with the Event Horizon Telescope, the gas bubble represented around it has not: its orbit and velocity are inferred from both observations and models. The team who discovered evidence for this hot spot — using the Atacama Large Millimeter/submillimeter Array (ALMA), in which ESO is a partner — predicts the gas bubble orbits very close to the black hole, at a distance about five times larger than the black hole’s boundary or “event horizon.”
The astronomers behind the discovery also predict that the hot spot becomes dimmer and brighter as it goes around the black hole, as indicated in this animation. Additionally, they can infer that it takes 70 minutes for the gas bubble to complete an orbit, putting its velocity at an astonishing 30% of the speed of light.
Credit: EHT Collaboration, ESO/L. Calçada (Acknowledgment: M. Wielgus)
“Perhaps these hot spots detected at infrared wavelengths are a manifestation of the same physical phenomenon: as infrared-emitting hot spots cool down, they become visible at longer wavelengths, like the ones observed by ALMA and the EHT,” adds Jesse Vos. He is a PhD student at Radboud University, the Netherlands, and was also involved in this study.
The flares were long thought to originate from magnetic interactions in the very hot gas orbiting very close to Sagittarius A*, and the new findings support this idea. “Now we find strong evidence for a magnetic origin of these flares and our observations give us a clue about the geometry of the process. The new data are extremely helpful for building a theoretical interpretation of these events,” says co-author Monika Moscibrodzka from Radboud University.
ALMA allows astronomers to study polarized radio emission from Sagittarius A*, which can be used to unveil the black hole’s magnetic field. The team used these observations together with theoretical models to learn more about the formation of the hot spot and the environment it is embedded in, including the magnetic field around Sagittarius A*. Their research provides stronger constraints on the shape of this magnetic field than previous observations, helping astronomers uncover the nature of our black hole and its surroundings.
The observations confirm some of the previous discoveries made by the GRAVITY instrument at ESO’s Very Large Telescope (VLT), which observes in the infrared. The data from GRAVITY and ALMA both suggest the flare originates in a clump of gas swirling around the black hole at about 30% of the speed of light in a clockwise direction in the sky, with the orbit of the hot spot being nearly face-on.
“In the future, we should be able to track hot spots across frequencies using coordinated multiwavelength observations with both GRAVITY and ALMA — the success of such an endeavor would be a true milestone for our understanding of the physics of flares in the Galactic center,” says Ivan Marti-Vidal of the University of València in Spain, co-author of the study.
The team is also hoping to be able to directly observe the orbiting gas clumps with the EHT, to probe ever closer to the black hole and learn more about it. “Hopefully, one day, we will be comfortable saying that we ‘know’ what is going on in Sagittarius A*,” Wielgus concludes.
More information
Reference: “Orbital motion near Sagittarius A* – Constraints from polarimetric ALMA observations” by M. Wielgus, M. Moscibrodzka, J. Vos, Z. Gelles, I. Martí-Vidal, J. Farah, N. Marchili, C. Goddi and H. Messias, 22 September 2022, Astronomy & Astrophysics.
DOI: 10.1051/0004-6361/202244493
The team is composed of M. Wielgus (Max-Planck-Institut für Radioastronomie, Germany [MPIfR]; Pusat Astronomi Nicholas Copernicus, Akademi Ilmu Pengetahuan Polandia, Polandia; Inisiatif Lubang Hitam di Universitas Harvard, AS [BHI]), M. Moscibrodzka (Departemen Astrofisika, Universitas Radboud, Belanda [Radboud]), J. Vos (Radboud), Z. Gelles (Pusat Astrofisika | Harvard & Smithsonian, AS dan BHI), I. Martí-Vidal (Universitat de València, Spanyol), J. Farah (Las Cumbres Observatory, AS; Universitas dari California, Santa Barbara, AS), N. Marchili (Pusat Regional Italia ALMA, INAF-Istituto di Radioastronomia, Italia dan MPIfR), C. Goddi (Dipartimento di Fisica, Università degli Studi di Cagliari, Italia dan Universidade de São Paulo, Brazil), dan H. Messias (ALMA Joint Observatory, Chile).
Atacama Large Millimeter/submillimeter Array (ALMA), fasilitas astronomi internasional, adalah kemitraan antara ESO, US National Science Foundation (NSF) dan National Institutes of Natural Sciences (NINS) Jepang bekerja sama dengan Republik Chili. ALMA didanai oleh ESO atas nama negara-negara anggotanya, oleh NSF bekerja sama dengan Dewan Riset Nasional Kanada (NRC) dan Kementerian Sains dan Teknologi (MOST) dan oleh NINS bekerja sama dengan Academia Sinica (AS) di Taiwan dan Institut Ilmu Astronomi dan Antariksa Korea (KASI). ). Pembuatan dan operasi ALMA dipimpin oleh ESO atas nama negara-negara anggotanya; Oleh National Radio Astronomy Observatory (NRAO), dioperasikan oleh Associated Universities, Inc. (AUI), atas nama Amerika Utara; Dan oleh Observatorium Astronomi Nasional Jepang (NAOJ) atas nama Asia Timur. Observatorium ALMA Bersama (JAO) memberikan kepemimpinan dan manajemen terpadu untuk konstruksi, operasi, dan pengoperasian ALMA.
European Southern Observatory (ESO) memungkinkan para ilmuwan di seluruh dunia untuk menemukan rahasia alam semesta untuk kepentingan semua. Kami merancang, membangun, dan mengoperasikan observatorium kelas dunia di Bumi – yang digunakan para astronom untuk menjawab pertanyaan menarik dan menyebarkan keajaiban astronomi – dan mempromosikan kerja sama internasional dalam astronomi. Didirikan sebagai organisasi antar pemerintah pada tahun 1962, saat ini ESO mendukung 16 negara anggota (Austria, Belgia, Republik Ceko, Denmark, Prancis, Finlandia, Jerman, Irlandia, Italia, Belanda, Polandia, Portugal, Spanyol, Swedia, Swiss, dan Inggris Raya ), Bersama dengan negara tuan rumah Chili dan dengan Australia sebagai mitra strategis. Markas besar ESO, pusat pengunjung dan planetarium, ESO Supernova, terletak di dekat Munich di Jerman, sedangkan Gurun Atacama Chili, tempat yang indah dengan kondisi unik untuk mengamati langit, menjadi tempat teleskop kami. ESO mengoperasikan tiga lokasi pemantauan: La Silla, Paranal dan Chajnantor. Di Paranal, ESO mengoperasikan Teleskop Sangat Besar dan Interferometer Teleskop Sangat Besarnya, serta dua teleskop survei inframerah dan teleskop survei cahaya tampak VLT. Juga di Paranal ESO akan menjadi tuan rumah dan mengoperasikan South Array Cherenkov Telescope, observatorium sinar gamma terbesar dan paling sensitif di dunia. Bersama dengan mitra internasional, ESO mengoperasikan APEX dan ALMA di Chajnantor, dua fasilitas yang memantau langit dalam kisaran milimeter dan sub-milimeter. Di Cerro Armazones, dekat Paranal, kami sedang membangun “mata terbesar di langit” – Teleskop Sangat Besar ESO. Dari kantor kami di Santiago, Chili, kami mendukung operasi kami di negara ini dan bekerja dengan mitra dan komunitas Chili.
“Kutu buku musik lepas. Pecandu internet bersertifikat. Pencinta perjalanan. Penyelenggara hardcore. “
More Stories
Tingkat virus corona yang tinggi telah terdeteksi di air limbah di New Hampshire
Sepasang jet plasma besar terlihat keluar dari lubang hitam raksasa Lubang hitam
Gambar dramatis dari bulan panen raksasa dan gerhana bulan sebagian